Games and perfect independent subsets of the generalized Baire space

Dorottya Sziráki

MTA Rényi Institute

Hejnice, 1 February 2017

The generalized Baire space

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The domain of the κ -Baire space is the set $\kappa \kappa$ of functions $f : \kappa \to \kappa$. Its topology is given by the basic open sets

$$N_p = \{ f \in {}^{\kappa} \kappa : p \subseteq f \},\$$

where $p \in {}^{<\kappa}\kappa$ (i.e., $p: \alpha \to \kappa$ for some $\alpha < \kappa$).

The generalized Baire space

Let κ be an uncountable cardinal such that $\kappa^{<\kappa} = \kappa$.

The domain of the κ -Baire space is the set $\kappa \kappa$ of functions $f : \kappa \to \kappa$. Its topology is given by the basic open sets

$$N_p = \{ f \in {}^{\kappa} \kappa : p \subseteq f \},\$$

where $p \in {}^{<\kappa}\kappa$ (i.e., $p: \alpha \to \kappa$ for some $\alpha < \kappa$).

 κ -Borel sets: close the family of open subsets under intersections and unions of size $\leq \kappa$ and complementation.

$\kappa\text{-perfect sets}$

Definition

A tree $T \subseteq {}^{<\kappa}\kappa$ is a $\kappa\text{-perfect tree}$ if

- ► T is < κ-closed</p>
- \blacktriangleright every node of T extends to a splitting node.

κ -perfect sets

Definition

A tree $T \subseteq {}^{<\kappa}\kappa$ is a κ -perfect tree if

- ► T is < κ-closed</p>
- every node of T extends to a splitting node.

 $X \subseteq {}^{\kappa}\kappa$ is a κ -perfect set if X = [T] for some κ -perfect tree T.

A game characterizing κ -perfectness

Definition (Väänänen)

Let $X \subseteq {}^{\kappa}\kappa$. Then $G_{\kappa}(X)$ is the following game.

- I plays $n_{\alpha} < \kappa$ such that $n_{\alpha} > n_{\beta}$ for all $\beta < \alpha$, and $n_{\alpha} = \sup_{\beta < \alpha} n_{\beta}$ at limits α .
- II responds with $x_{\alpha} \in X$ such that $x_{\alpha} \upharpoonright n_{\beta+1} = x_{\beta} \upharpoonright n_{\beta+1}$ but $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

Player II wins, if she can make all her κ moves.

- A closed set X contains a κ -perfect subset iff II wins $G_{\kappa}(X)$.
- When $X \subseteq {}^{\kappa}\kappa$ is arbitrary, II wins $G_{\kappa}(X)$ iff there exists $Y \subseteq X$ such that \overline{Y} is κ -perfect,

A game characterizing κ -perfectness

Definition (Väänänen)

Let $X \subseteq {}^{\kappa}\kappa$. Then $G_{\kappa}(X)$ is the following game.

- I plays $n_{\alpha} < \kappa$ such that $n_{\alpha} > n_{\beta}$ for all $\beta < \alpha$, and $n_{\alpha} = \sup_{\beta < \alpha} n_{\beta}$ at limits α .
- II responds with $x_{\alpha} \in X$ such that $x_{\alpha} \upharpoonright n_{\beta+1} = x_{\beta} \upharpoonright n_{\beta+1}$ but $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

Player II wins, if she can make all her κ moves.

- A closed set X contains a κ -perfect subset iff II wins $G_{\kappa}(X)$.
- When $X \subseteq {}^{\kappa}\kappa$ is arbitrary, II wins $G_{\kappa}(X)$ iff there exists $Y \subseteq X$ such that \overline{Y} is κ -perfect,
- X is κ -scattered iff Player I wins $G_{\kappa}(X)$.

For all $X \subseteq {}^{\kappa}\kappa$,

(1) either $|X| \leq \kappa$ or Player II wins $G_{\kappa}(X)$ (i.e. there is $Y \subseteq X$ such that \overline{Y} is κ -perfect).

Theorem (Schlicht, Sz.)

If $\lambda > \kappa$ is weakly compact, then the Lévy-collapse ${\rm Col}(\kappa,<\lambda)$ forces that:

For all $X \subseteq {}^{\kappa}\kappa$,

(1) either $|X| \leq \kappa$ or Player II wins $G_{\kappa}(X)$ (i.e. there is $Y \subseteq X$ such that \overline{Y} is κ -perfect).

Theorem (Schlicht, Sz.)

If $\lambda > \kappa$ is weakly compact, then the Lévy-collapse ${\rm Col}(\kappa,<\lambda)$ forces that:

For all $X \subseteq {}^{\kappa}\kappa$,

- (1) either $|X| \leq \kappa$ or Player II wins $G_{\kappa}(X)$ (i.e. there is $Y \subseteq X$ such that \overline{Y} is κ -perfect).
 - If (1) holds for all closed subsets, then κ^+ is inaccessible in L.

Theorem (Schlicht, Sz.)

If $\lambda > \kappa$ is weakly compact, then the Lévy-collapse ${\rm Col}(\kappa,<\lambda)$ forces that:

For all $X \subseteq {}^{\kappa}\kappa$,

- (1) either $|X| \leq \kappa$ or Player II wins $G_{\kappa}(X)$ (i.e. there is $Y \subseteq X$ such that \overline{Y} is κ -perfect).
 - If (1) holds for all closed subsets, then κ^+ is inaccessible in L.
 - If λ > κ is inaccessible, then Col(κ, < λ) forces that (1) holds for closed subsets of ^κκ, and even subsets of ^κκ definable from ordinals and subsets of κ (Schlicht).

Theorem (Schlicht, Sz.)

If $\lambda > \kappa$ is weakly compact, then the Lévy-collapse ${\rm Col}(\kappa,<\lambda)$ forces that:

For all $X \subseteq {}^{\kappa}\kappa$,

- (1) either $|X| \leq \kappa$ or Player II wins $G_{\kappa}(X)$ (i.e. there is $Y \subseteq X$ such that \overline{Y} is κ -perfect).
 - If (1) holds for all closed subsets, then κ^+ is inaccessible in L.
 - If λ > κ is inaccessible, then Col(κ, < λ) forces that (1) holds for closed subsets of ^κκ, and even subsets of ^κκ definable from ordinals and subsets of κ (Schlicht).
 - It was known that if λ > κ is measurable, then Col(κ, < λ) forces that (1) for all subsets of ^κκ (Galvin, Jech, Magidor; Väänänen).

R is a $\Sigma_2^0(\kappa)$ relation on a topological space X iff R is a union of $\leq \kappa$ many closed subsets of kX for some $1 \leq k < \omega$.

R is a $\Sigma_2^0(\kappa)$ relation on a topological space X iff R is a union of $\leq \kappa$ many closed subsets of kX for some $1 \leq k < \omega$.

Let $\mathcal R$ be a collection of finitary relations on X.

 $Y \subseteq X$ is \mathcal{R} -independent if for all $1 \leq k < \omega$ and k-ary $R \in \mathcal{R}$ we have: $(x_1, \ldots, x_k) \notin R$ for all pairwise distinct $x_1, \ldots, x_k \in Y$.

Proposition (Sz.)

Assume \Diamond_{κ} or κ is inaccessible.

Let \mathcal{R} be a collection of $\leq \kappa$ many $\Sigma_2^0(\kappa)$ relations on ${}^{\kappa}\kappa$.

If II wins $G_{\kappa}(Y)$ for some \mathcal{R} -independent $Y \subseteq {}^{\kappa}\kappa$, then there exists a κ -perfect \mathcal{R} -independent subset of ${}^{\kappa}\kappa$.

R is a $\mathbf{\Sigma}_2^0(\kappa)$ relation on a topological space X iff

R is a union of $\leq \kappa$ many closed subsets of kX for some $1 \leq k < \omega$.

Let $\mathcal R$ be a collection of finitary relations on X.

 $Y \subseteq X$ is \mathcal{R} -independent if for all $1 \leq k < \omega$ and k-ary $R \in \mathcal{R}$ we have: $(x_1, \ldots, x_k) \notin R$ for all pairwise distinct $x_1, \ldots, x_k \in Y$.

Corollary

If $\lambda > \kappa$ is weakly compact, then in $V^{Col(\kappa, <\lambda)}$ the following holds:

Let \mathcal{R} be a collection of $\leq \kappa$ many $\Sigma_2^0(\kappa)$ relations on $X = {}^{\kappa}\kappa$ (or even on a κ -analytic subset $X \subseteq {}^{\kappa}\kappa$).

If there is an \mathcal{R} -independent $Y \subseteq X$ of size $> \kappa$, then there exists a κ -perfect \mathcal{R} -independent subset of X.

R is a $\mathbf{\Sigma}_2^0(\kappa)$ relation on a topological space X iff

R is a union of $\leq \kappa$ many closed subsets of kX for some $1 \leq k < \omega$.

Let $\mathcal R$ be a collection of finitary relations on X.

 $Y \subseteq X$ is \mathcal{R} -independent if for all $1 \leq k < \omega$ and k-ary $R \in \mathcal{R}$ we have: $(x_1, \ldots, x_k) \notin R$ for all pairwise distinct $x_1, \ldots, x_k \in Y$.

Corollary

If $\lambda > \kappa$ is weakly compact, then in $V^{\mathsf{Col}(\kappa,<\lambda)}$ the following holds:

Let \mathcal{R} be a collection of $\leq \kappa$ many $\Sigma_2^0(\kappa)$ relations on $X = {}^{\kappa}\kappa$ (or even on a κ -analytic subset $X \subseteq {}^{\kappa}\kappa$).

If there is an \mathcal{R} -independent $Y \subseteq X$ of size $> \kappa$, then there exists a κ -perfect \mathcal{R} -independent subset of X.

 Countable version of this dichotomy: Kubiś (2003), Doležal, Kubiś (2015).

R is a $\mathbf{\Sigma}_2^0(\kappa)$ relation on a topological space X iff

R is a union of $\leq \kappa$ many closed subsets of kX for some $1 \leq k < \omega$.

Let $\mathcal R$ be a collection of finitary relations on X.

 $Y \subseteq X$ is \mathcal{R} -independent if for all $1 \leq k < \omega$ and k-ary $R \in \mathcal{R}$ we have: $(x_1, \ldots, x_k) \notin R$ for all pairwise distinct $x_1, \ldots, x_k \in Y$.

Corollary

If $\lambda > \kappa$ is weakly compact, then in $V^{\mathsf{Col}(\kappa,<\lambda)}$ the following holds:

Let \mathcal{R} be a collection of $\leq \kappa$ many $\Sigma_2^0(\kappa)$ relations on $X = {}^{\kappa}\kappa$ (or even on a κ -analytic subset $X \subseteq {}^{\kappa}\kappa$).

If there is an \mathcal{R} -independent $Y \subseteq X$ of size $> \kappa$, then there exists a κ -perfect \mathcal{R} -independent subset of X.

- This was known for $\lambda > \kappa$ measurable (Sz., Väänänen).
- The dichotomy in the corollary implies that κ^+ is inaccessible in L.

A version that does not need large cardinals

Theorem (Sz.)

Assume \Diamond_κ or κ is inaccessible.

Let \mathcal{R} be a collection of $\leq \kappa$ many $\Sigma_2^0(\kappa)$ relations on ${}^{\kappa}\kappa$.

If a κ -version of the statement "there exist \mathcal{R} -independent subsets of arbitrarily large Cantor-Bendixson rank" holds,

then there exists a κ -perfect \mathcal{R} -independent subset of $\kappa \kappa$.

 Countable version of this dichotomy: Kubiś (2003), Doležal, Kubiś (2015).

Trees as "Cantor-Bendixson ranks" for the κ -Baire space

Definition (Väänänen)

Let $X \subseteq {}^{\kappa}\kappa$, and let T be any tree. $G_T(X)$ is the following game.

. . .

. . .

I plays $t_{\alpha} \in T$ and $n_{\alpha} < \kappa$ such that $t_{\alpha} >_T t_{\beta}$ and $n_{\alpha} > n_{\beta}$ for all $\beta < \alpha$, and $n_{\alpha} = \sup_{\beta < \alpha} n_{\beta}$ at limits α .

II responds with $x_{\alpha} \in X$ such that $x_{\alpha} \upharpoonright n_{\beta+1} = x_{\beta} \upharpoonright n_{\beta+1}$ but $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

The first player who can not move loses, and the other player wins.

Trees as "Cantor-Bendixson ranks" for the κ -Baire space

Definition (Väänänen)

Let $X \subseteq {}^{\kappa}\kappa$, and let T be any tree. $G_T(X)$ is the following game.

. . .

. . .

I plays $t_{\alpha} \in T$ and $n_{\alpha} < \kappa$ such that $t_{\alpha} >_T t_{\beta}$ and $n_{\alpha} > n_{\beta}$ for all $\beta < \alpha$, and $n_{\alpha} = \sup_{\beta < \alpha} n_{\beta}$ at limits α .

II responds with $x_{\alpha} \in X$ such that $x_{\alpha} \upharpoonright n_{\beta+1} = x_{\beta} \upharpoonright n_{\beta+1}$ but $x_{\alpha} \neq x_{\beta}$ for all $\beta < \alpha$.

The first player who can not move loses, and the other player wins.

If T consists of just one branch of length κ, then G_T(X) is same game as G_κ(X). For an ordinal α , let

 $B_{\alpha} =$ tree of descending sequences of elements of α .

Claim

The Cantor-Bendixson rank of X is $\geq \alpha$ (i.e. $X^{(\alpha)} \neq \emptyset$)

iff Player I wins $G_{B_{\alpha}}(X)$ iff Player II does not win $G_{B_{\alpha}}(X)$. For an ordinal α , let

 $B_{\alpha} =$ tree of descending sequences of elements of α .

Claim

The Cantor-Bendixson rank of X is $\geq \alpha$ (i.e. $X^{(\alpha)} \neq \emptyset$) iff Player I wins $G_{B_{\alpha}}(X)$ iff Player II does not win $G_{B_{\alpha}}(X)$.

Two ways to generalize Cantor-Bendixson ranks for $X \subseteq {}^{\kappa}\kappa$ using trees T without κ -branches:

```
"X is simple iff Player I wins G_T(X)"
or
"X is simple iff Player II does not win G_T(X)."
```

Recall: II wins $G_{\kappa}(X)$ iff X has a subset whose closure is κ -perfect.

Theorem (Sz.)

Assume \Diamond_{κ} or κ is inaccessible.

Let \mathcal{R} be a collection of $\leq \kappa$ many $\Sigma_2^0(\kappa)$ relations on ${}^{\kappa}\kappa$.

Then either

- there exists a κ -perfect \mathcal{R} -independent subset of $\kappa \kappa$, or
- there exists a tree T without κ-branches, |T| ≤ 2^κ, such that
 Player II does not win G_T(X) for any R-independent X ⊆ ^κκ.

When κ is inaccessible, we can have $|T| \leq \kappa$.

Thank you for your attention!